空气激光:寻常物质中产生的不寻常激光
本文为中国激光第1798篇。
欢迎点击在看、转发,让更多人看到。
编者按
2020年第5期《中国激光》出版“纪念激光器诞生60周年”专题。中国科学院上海光学精密机械研究所姚金平研究员和程亚研究员受邀撰写《空气激光:强场新效应和远程探测新技术》长篇综述论文,并作为封面论文发表。论文从基本原理、物理效应和应用技术等方面对空气激光的研究进展进行了综述,对空气激光面临的机遇和挑战进行了总结与展望。
空气激光的发现
2
N2+激光机制之谜
3
空气激光的远程探测应用
图3 N2+激光在相干激发的CO2和O2分子中产生的高阶转动拉曼散射[18]。(a)基本原理;(b)拉曼光谱
4
总结与展望
三、一些科学问题和技术挑战亟待解决
(1)虽然N2+激光的宏观图像已经明晰,关于粒子数反转问题仍然存在着一些争议。这是因为N2+激光产生所涉及的物理效应丰富、体系复杂,建立完备的理论模型,包含所有相关物理过程是一个极大的挑战。参考文献:
[1] Vaulin V A, Slinko V N, Sulakshin S S. Air ultraviolet laser excited by high-power microwave pulses. Soviet Journal of Quantum Electronics, 1988, 18(11): 1457-1458.
[2] Luo Q, Liu W, Chin S L. Lasing action in air induced by ultra-fast laser filamentation. Applied Physics B, 2003, 76(3): 337-340.
[3] Dogariu A, Michael J B, Scully M O, et al. High-Gain Backward Lasing in Air. Science, 2011, 331(6016): 442-445.
[4]Yao J, Zeng B, Xu H, et al. High-brightness switchable multiwavelength remote laser in air. Physical Review A, 2011, 84(5): 051802(R).
[5] Polynkin P, Cheng Y. Air Lasing. 2018, Switzerland: Springer International Publishing.
[6] Yao J, Chu W, Liu Z, et al. An anatomy of strong-field ionization-induced air lasing. Applied Physics B-Lasers and Optics, 2018, 124(5): 73.
[7]Liu Y, Ding P, Lambert G, et al. Recollision-Induced Superradiance of Ionized Nitrogen Molecules. Physical Review Letters, 2015, 115(13): 133203.
[8] Yao J, Jiang S, Chu W, et al. Population Redistribution Among Multiple Electronic States of Molecular Nitrogen Ions in Strong Laser Fields. Physical Review Letters, 2016, 116(14): 143007.
[9] Xu H, Loetstedt E, Iwasaki A, et al. Sub-10-fs population inversion in N2+ in air lasing through multiple state coupling. Nature Communications, 2015, 6: 8347.
[10]Azarm A, Corkum P, Polynkin P. Optical gain in rotationally excited nitrogen molecular ions. Physical Review A, 2017, 96(5): 051401(R).
[11]Li H, Hou M, Zang H, et al. Significant Enhancement of N2+ Lasing by Polarization-Modulated Ultrashort Laser Pulses. Physical Review Letters, 2019, 122(1): 013202.
[12]Zhang Q, Xie H, Li G, et al. Sub-cycle coherent control of ionic dynamics via transient ionization injection. Communications Physics, 2020, 3(1): 50.
[13] Liu Z, Yao J, Chen J, et al. Near-Resonant Raman Amplification in the Rotational Quantum Wave Packets of Nitrogen Molecular Ions Generated by Strong Field Ionization. Physical Review Letters, 2018, 120(8): 083205.
[14]Chen J, Yao J, Zhang H, et al. Electronic-coherence-mediated molecular nitrogen-ion lasing in a strong laser field. Physical Review A, 2019, 100(3): 031402(R).
[15]Zhang A, Liang Q, Lei M, et al. Coherent modulation of superradiance from nitrogen ions pumped with femtosecond pulses. Optics Express, 2019, 27(9): 12638-12646.
[16] Mysyrowicz A, Danylo R, Houard A, et al. Lasing without population inversion in N2+. APL Photonics, 2019, 4(11): 110807.
[17] Malevich P N, Maurer R, Kartashov D, et al. Stimulated Raman gas sensing by backward UV lasing from a femtosecond filament. Optics Letters, 2015, 40(11): 2469-2472.
[18]Liu Z, Yao J, Zhang H, et al. Extremely nonlinear Raman interaction of an ultrashort nitrogen ion laser with an impulsively excited molecular wave packet. Physical Review A, 2020, 101(4): 043404.
延伸阅读:
[1]李贺龙,王思琪,付尧,徐淮良.空气激光的原理、产生及应用[J].中国激光,2020,47(5):0500017
[2]郭振宁,马雪岩,韩猛,葛佩佩,刘明明,刘运全. 飞秒激光场中原子/分子的隧道电离及应用[J]. 中国激光, 2019, 46(5): 0508017
[3] 侯梦瑶,王思琪,姚丹雯,付尧,臧宏伟,李贺龙,徐淮良. 激光脉宽和偏振效应对飞秒光丝诱导燃烧中间产物荧光光谱的影响[J]. 中国激光, 2019, 46(5): 0508024
[4] 朱斌,王国利,李小勇,周效信. 强激光场作用下He原子低激发态的制备和控制[J]. 光学学报, 2018, 38(7): 0702002
[5] 罗嗣佐,陈洲,李孝开,胡湛,丁大军. 超快飞秒激光场中原子分子量子态调控[J]. 光学学报, 2019, 39(1): 0126007
[6]刘洋,陈宗胜,时家明. 飞秒激光等离子体通道电磁波传输研究进展[J]. 激光与光电子学进展, 2019, 56(9): 090002
End
推荐阅读
首发前沿光学成果,放送新鲜光学活动
如需转载,请直接留言。
商务合作:朱先生 13918384218
免责声明
本文注明来源为其他媒体或网站的文/图等稿件均为转载,如涉及版权等问题,请作者在20个工作日之内来电或来函联系,我们将协调给予处理(按照法规支付稿费或删除)。
最终解释权归《中国激光》杂志社所有。